TABLE OF CONTENTS

1 **Introduction** ...1 - 1
 1.1 On the use of three different models1 - 1
 1.2 Warnings ...1 - 2
 1.3 Contents ...1 - 3

2 **Preliminaries on material modelling**2 - 1
 2.1 General definitions of stress and strain.........................2 - 1
 2.2 Elastic strains ...2 - 3
 2.3 Undrained analysis with effective parameters2 - 5
 2.4 Undrained analysis with undrained parameters2 - 8
 2.5 The initial pre-consolidation stress in advanced models2 - 8
 2.6 On the initial stresses ..2 -10

3 **The Mohr-Coulomb model (perfect-plasticity)**3 - 1
 3.1 Elastic perfectly-plastic behaviour3 - 1
 3.2 Formulation of the Mohr-Coulomb model3 - 2
 3.3 Basic parameters of the Mohr-Coulomb model3 - 4
 3.4 Advanced parameters of the Mohr-Coulomb model3 - 8

4 **The Hardening-Soil model (isotropic hardening)**4 - 1
 4.1 Hyperbolic relationship for standard drained triaxial tests ...4 - 2
 4.2 Approximation of hyperbola by the Hardening-Soil model4 - 3
 4.3 Plastic volumetric strain for triaxial states of stress4 - 5
 4.4 Parameters of the Hardening-Soil model4 - 6
 4.5 On the cap yield surface in the Hardening-Soil model4 -11

5 **Soft-Soil-Creep model (time dependent behaviour)**5 - 1
 5.1 Introduction ...5 - 1
 5.2 Basics of one-dimensional creep5 - 2
 5.3 On the variables τ and ε_c5 - 4
 5.4 Differential law for 1D-creep5 - 6
 5.5 Three-dimensional-model ..5 - 8
 5.6 Formulation of elastic 3D-strains5 -10
 5.7 Review of model parameters5 -11
 5.8 Validation of the 3D-model5 -14

6 **The Soft-Soil model** ..6 - 1
 6.1 Isotropic states of stress and strain ($\sigma_1' = \sigma_2' = \sigma_3'$)6 - 1
 6.2 Yield function for triaxial stress state ($\sigma_2' = \sigma_3'$)6 - 3
 6.3 Parameters in the Soft-Soil model6 – 5
7 Applications of advanced soil models

7.1 HS model: response in drained and undrained triaxial tests

7.2 Application of the Hardening-Soil model on real soil tests

7.3 SSC model: response in one-dimensional compression test

7.4 SSC model: undrained triaxial tests at different loading rates

7.5 SS model: response in isotropic compression test

7.6 Submerged construction of an excavation with HS model

7.7 Road embankment construction with the SSC model

8 References

A Appendix A - Symbols