Problem 3-9

Cords AB and AC can each sustain a maximum tension of T. If the drum has a weight W, determine the smallest angle θ at which they can be attached to the drum.

Units Used:

$\text{lb} := 0.454 \text{kg}$

Given:

$T := 800 \text{lb}$

$W := 900 \text{lb}$

Problem 3-19

The cords BCA and CD can each support a maximum load of T. Determine the maximum weight of the crate that can be hoisted at constant velocity, and the angle θ for equilibrium.

Units Used:

$\text{lb} := 0.454 \text{kg}$

Given:

$T := 100 \text{lb}$

$c := 12$

$d := 5$
Problem 3-37

The lamp fixture weighs \(W \) and is suspended from two springs, each having an unstretched length of \(L \) and stiffness of \(k \). Determine the angle \(\theta \) for equilibrium.

Units Used:

\[kN := 1000N \]

Given:

\(W := 10lb \)

\(l := 4ft \)

\(k := 5 \frac{lb}{ft} \)

\(a := 4ft \)

Problem 3-57

Determine the height \(d \) of cable \(AB \) so that the force in cables \(AD \) and \(AC \) is one-half as great as the force in cable \(AB \). What is the force in each cable for this case? The flowerpot has mass \(m_p \).

Given:

\(m_p := 50kg \)

\(c := 3m \)

\(a := 2m \)

\(b := a \)

\(f := 6m \)

\(e := 6m \)

\(g := 9.81 \frac{m}{s^2} \)
Problem 3-64

The ball of weight W is suspended from the horizontal ring using three springs each having an unstretched length δ and stiffness k. Determine the vertical distance h from the ring to point A for equilibrium.

Units Used:

Given:

$W := 80\text{lb}$

$\delta := 1.5\text{ft}$

$k := 50 \frac{\text{lb}}{\text{ft}}$

$r := 1.5\text{ft}$