Problem 5-12

Determine the magnitude of the resultant force acting at pin A of the handpunch.

Units Used:

Given:

$F := 8\text{lb}$

$a := 1.5\text{ft}$

$b := 0.2\text{ft}$

$c := 2\text{ft}$

Solution:
Problem 5-18

The beam is pin-connected at A and rocker-supported at B. Determine the reactions at the pin A and at the roller at B.

Units Used:

Given:

$F := 500\text{N}$

$M := 800\text{N}\cdot\text{m}$

$a := 8\text{m}$

$b := 4\text{m}$

$c := 5\text{m}$

Solution:
Problem 5-24

Determine the magnitude of force at the pin A and in the cable BC needed to support the load W. Neglect the weight of the boom AB.

Units Used:

kip := 1000lb

Given:

$W := 500lb$

$\phi := 22$deg

$\theta := 35$deg

$d := 8$ft

Solution:
Problem 5-28

Determine the tension in the cable and the horizontal and vertical components of reaction of the pin A. The pulley at D is frictionless and the cylinder has weight W.

Units Used:

Given:

$W := 80\text{lb}$

$a := 5\text{ft}$

$b := 5\text{ft}$

$c := 3\text{ft}$

$d := 2$
Problem 5-35

If the wheelbarrow and its contents have a mass of \(m_w \) and center of mass at \(G \), determine the magnitude of the resultant force which the man must exert on \(each \) of the two handles in order to hold the wheelbarrow in equilibrium.

Units Used:

\[g := 9.81 \text{ m/s}^2 \]

Given:

\(m_w := 60 \text{kg} \)

\(a := 0.6 \text{m} \)

\(b := 0.5 \text{m} \)

\(c := 0.9 \text{m} \)

\(d := 0.5 \text{m} \)

Solution: