Problem 6-117

The tractor boom supports the uniform mass \(m_1 \) in the bucket which has a center of mass at \(G \). Determine the force in each hydraulic cylinder \(AB \) and \(CD \) and the resultant force at pins \(E \) and \(F \). The load is supported equally on each side of the tractor by a similar mechanism.

Units Used: \(\text{kN} := 10^3 \text{N} \)

\[
g_{\text{grav}} := 9.81 \frac{\text{m}}{\text{s}^2}
\]

\(\text{kg} := 1000 \text{gm} \)

Given:

\[
m_1 := 500 \text{kg}
\]

\[
a := 0.1 \text{m} \quad f := 1.25 \text{m}
\]

\[
b := 0.3 \text{m} \quad g := 0.6 \text{m}
\]

\[
c := 1.5 \text{m} \quad h := 0.3 \text{m}
\]

\[
d := 0.25 \text{m} \quad i := 0.4 \text{m}
\]

\[
e := 0.2 \text{m}
\]

Solution:
Problem 6-120

Determine the required force P that must be applied at the blade of the pruning shears so that the blade exerts a normal force of F on the twig at E.

Units Used:

Given:

- $F := 20\text{lb}$
- $a := 0.5\text{in}$
- $b := 4\text{in}$
- $c := 0.75\text{in}$
- $d := 0.75\text{in}$
- $e := 1\text{in}$
Problem 7-11

Determine the shear force and moment acting at a section passing through point \(C \) in the beam.

Units Used:

\(\text{kip} := 10^3 \text{lb} \)

Given:

\(w := \frac{3 \text{ kip}}{\text{ft}} \)

\(a := 6 \text{ft} \)

\(b := 18 \text{ft} \)
Problem 7-16

The strongback or lifting beam is used for materials handling. If the suspended load has weight W and a center of gravity of G, determine the placement d of the padeyes on the top of the beam so that there is no moment developed within the length AB of the beam. The lifting bridle has two legs that are positioned at angle θ as shown.

Units Used:

kN $:= 1000\text{N}$

Given:

$W := 2\text{kN}$

$\theta := 45\text{deg}$

$a := 0.2\text{m}$

$b := 3\text{m}$

Solution:

Support Reactions: From FBD (a),
Problem 7-59

Draw the shear and moment diagrams for the beam.

Units Used: \(\text{kip} := 1000 \text{lb} \)

Given: \(w := \frac{4 \text{ kip}}{\text{ft}} \) \(a := 12 \text{ ft} \)

\(b := 12 \text{ ft} \)